
MinMax Sampling: A Near-optimal Global Summary for
Aggregation in the Wide Area

Yikai Zhao
†

Peking University

Yinda Zhang
†

Peking University

Yuanpeng Li
†

Peking University

Yi Zhou
†

Peking University

Chunhui Chen
§

Peking University

Tong Yang
†‡

Peking University

Bin Cui
†

Peking University

ABSTRACT
∗
Nowadays, wide-area data analyses are pervasive with emerg-

ing geo-distributed systems. These analyses often need to do the

global aggregation in the wide area. Since scarce and variable WAN

bandwidth may degrade the aggregation performance, it is highly

desired to design a communication scheme for global aggregation

in WAN. Unfortunately, no existing algorithm can meet the three

design requirements of communication schemes: fast computation,

adaptive transmission, and accurate aggregation. In this paper, we

propose MinMax Sampling, a fast, adaptive, and accurate communi-

cation scheme for global aggregation in WAN. We first focus on the

accuracy and design a scheme, namely MinMaxopt, to achieve opti-

mal accuracy. However, MinMaxopt does not meet the other two

requirements: fast computation and adaptive transmission. Based

on MinMaxopt, we propose MinMax
adp

, which trades little accu-

racy for the other two requirements. We evaluate MinMax
adp

with

three applications: federated learning, distributed state aggregation,

and hierarchical aggregation. Our experimental results show that

MinMax
adp

is superior to existing algorithms (8.44× better accuracy

on average) in all three applications. The source codes of MinMax

Sampling are available at Github [1].

CCS CONCEPTS
• Theory of computation → Sketching and sampling; • Net-
works→ Wide area networks.

KEYWORDS
Sampling; Wide-Area Network; Federated Learning

†
School of Computer Science, and National Engineering Laboratory for Big Data

Analysis Technology and Application, Peking University, China.

‡
Peng Cheng Laboratory, Shenzhen, China.

§
School of Software & Microelectrionics, Peking University, China.

∗
Yikai Zhao, Yinda Zhang, and Yuanpeng Li contribute equally to this paper.

Tong Yang (yangtongemail@gmail.com) is the corresponding author. This work

is supported by Key-Area Research and Development Program of Guangdong

Province 2020B0101390001, National Natural Science Foundation of China (NSFC) (No.

U20A20179, 61832001).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3526160

ACM Reference Format:
Yikai Zhao, Yinda Zhang, Yuanpeng Li, Yi Zhou, Chunhui Chen, Tong

Yang, and Bin Cui. 2022. MinMax Sampling: A Near-optimal Global Sum-

mary for Aggregation in the Wide Area. In Proceedings of the 2022 In-
ternational Conference on Management of Data (SIGMOD ’22), June 12–
17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3514221.3526160

1 INTRODUCTION
1.1 Background and Motivation
Nowadays, wide-area data analyses are pervasive with emerging

geo-distributed systems. CDNs (Content Distribution Networks) [2]

and other computing infrastructures [3–5] often generate a large

volume of data on geographically distributed devices across the

globe. To get the global state to support better global synchroniza-

tion [6], runtime monitoring [7], fault detection [8, 9], etc. [10, 11],
these applications often need to do the global aggregation in the

wide area. Specifically, applications should collect the states from

all local devices and aggregate them on the central device to get

the global state. In this paper, we focus on such a global aggre-

gation problem: Formally, a distributed system includes a central

device and many local devices. Each local device maintains a local

value vector 𝑉𝑖 . Global aggregation aims to obtain the global value

vector 𝑉 =
∑
𝑉𝑖 , the sum of all local value vectors, on the central

device. Global aggregation is a common problem, and we show

three typical cases in the following.

Federated Learning: Federated learning [12] is an important ma-

chine learning setting, in which training data are distributed on

many local devices. Federated learning uses a Parameter Server to
collect local training gradients from multiple devices to obtain the

global gradient [13]. In this case, the gradient on each local device

can be regarded as𝑉𝑖 , and the global gradient can be regarded as𝑉 .

Distributed State Aggregation: Distributed state aggregation is

necessary formany distributed data services, includingmulti-region

databases [7, 14–16] and CDNs [9]. For these services, typically

each local server maintains some local states (e.g., system event

logs that record the number of occurrences of each event, object

access logs that record the number of requests for each object [17]),

and operators need to collect the local states from all servers to

monitor the services in a global view. In these cases, the local state

on each server can be represented as 𝑉𝑖 , and the global state of the

whole service can be represented as 𝑉 .

Hierarchical Aggregation: Hierarchical aggregation usually oc-

curs in networks with a hierarchical structure, such as sensor net-

works organized as rooted spanning trees [10, 11], and large-scale

https://doi.org/10.1145/3514221.3526160
https://doi.org/10.1145/3514221.3526160

WAN (Wide-Area Network) composed of multiple AS (Autonomous

System) domains [18]. In these cases, the global value vector in one

level
1
of aggregation may be regarded as the local value vector in

the next level of aggregation.

Since local devices often connect to the central device through

the wireless network or WAN [19], scarce and variable bandwidth

may degrade the aggregation performance. For federated learning,

the slow gradient aggregation speed will prolong the time of model

training [20, 21]; for distributed state aggregation, the slow state

aggregation speed will constrain the granularity of operators mon-

itoring the whole service, and increase the response delay of fault

events [22]. Since the network has become the bottleneck in the

global aggregation, it is highly desired to design a communication

scheme for global aggregation in WAN. Specifically, a communica-

tion scheme generates an approximate local summary 𝑉𝑖 for the

local value vector 𝑉𝑖 on each local device, transmits 𝑉𝑖 instead of

𝑉𝑖 to the central device, and computes a global summary 𝑉 on the

central device through all 𝑉𝑖 to approximate the global value vec-

tor 𝑉 . There are three most important design requirements of the

communication scheme as follows.

• Fast for computation on local devices. Local devices often have

limited computation resources compared to the central device

[23]. If the scheme employs complex procedures to generate sum-

maries on local devices, the end-to-end communication delay will

be prolonged. Therefore, the procedure to generate the summary

should be fast.

• Adaptive for transmission over the network. The available band-

width between distributed devices and the central device is often

scarce and varies a lot over space and time. As shown in prior

works [6], the WAN bandwidth capacity is 15× smaller than their

LAN bandwidth on average, and up to 60× smaller in the worst

case. Therefore, the scheme should allow different local devices

to customize and dynamically change the size of transmitted

local summaries according to their own available bandwidth.

• Accurate for aggregation on the central device. Besides the

scarce and varied bandwidth, the massive number of local devices

is also a challenge to accurately estimate the global value vector

on the central device. Although each local summary may bring

only a small error to the local value vector, the errors could be

accumulated and cause a great disturbance to the global value

vector after aggregation. Therefore, the scheme should accurately

estimate each global value in the global value vector after aggre-

gating a massive number of local summaries from local devices.

1.2 Limitations of Prior Art
Existing communication schemes for global aggregation can be

divided into three categories: compression-based schemes, sketch-

based schemes, and sampling-based schemes.

Compression-based schemes: Lossless compression algorithms

[24] allow perfect reconstruction of original data after compres-

sion. For these algorithms, the requirement of lossless compression

brings a large computational burden. Further, the compression ratio

cannot be flexibly customized, and thus cannot achieve adaptive

transmission.

1
The devices in the hierarchical network are divided into multiple levels, and the

global aggregation is level-by-level [11].

Sketch-based scheme: These communication schemes use a kind

of probabilistic data structure named sketch
2
to approximately

record the local value vector. As shown in prior works [30], the

sketch can approximate the local value vector with high accuracy

on a single device. Prior works often utilize the mergeability of

existing sketches to aggregate the data. However, the mergeability

of sketches requires the size of sketches on all devices to be the

same, which prevents them from the adaptive transmission.

Sampling-based scheme: These communication schemes choose

a part of values from the local value vector for transmission. Typical

sampling algorithms for global aggregation include H-sampling

[31], Iceberg sampling [9], and top-𝐾 sampling [32, 33]. H-sampling

and Iceberg sampling are unbiased. H-sampling optimizes the global

transmission cost under a given error bound, and Iceberg sampling

achieves stable accuracy against variable distribution. However,

both of them require all local devices sharing the same configu-

ration, and thus are unable to customize the size of transmitted

local summary according to available bandwidth. Iceberg sampling

can force different devices to use different configurations at the

expense of sharp accuracy degradation, while H-sampling does not

offer this option. Top-𝐾 sampling is a typical biased sampling. Its

error will increase linearly with the number of local devices, so its

accuracy is poor when there are a massive number of devices.

In summary, no existing algorithm can meet all three design

requirements of global aggregation communication schemes. In

this paper, we aim to propose a communication scheme that can

meet these requirements at the same time.

1.3 Our Proposed Algorithm
In this paper, we propose MinMax Sampling, a fast, adaptive, and

accurate communication scheme for global aggregation in WAN. 1)

Fast: MinMax Sampling generates a local summary in linear time.

It can generate a summary for the local value vector containing

up to 60𝑀 values in one second using one CPU core. 2) Adaptive:
MinMax Sampling can generate the local summary of any desired

size. Further, it can modify the size transmitted on the fly, i.e., it
can transmit a growing local summary until a predetermined time

is reached or a termination signal is received. It can also work

when the values are streaming generated. 3) Accurate: MinMax

Sampling can generate a global summary to estimate the global

value vector unbiased. Compared to the state-of-the-art, its accuracy

is 8.44× higher on average. Further, accurate global aggregation

can help to improve the accuracy of federated learning by up to

7.73%.

To achieve all three requirements, we first focus on the accuracy

and design the optimal MinMax Sampling (MinMaxopt) to achieve

optimal accuracy. To address the challenge of a massive number of

devices, the sampling scheme should be unbiased. Assuming that

there are𝑛 local devices, using biased sampling, the estimation error

of the global value vector is 𝑂 (𝑛), i.e., it increases linearly with the

number of devices. Using unbiased schemes, the overestimation and

underestimation of different devices can offset each other, and the

error is𝑂 (
√
𝑛), i.e., it increases sub-linearly. For unbiased sampling,

reducing the estimation error of each global value in the global

value vector is equivalent to minimizing the maximum variance of

2
Sketch is a kind of compact data structure using linear projection. Typical sketches

include the Count-Min sketch [25], the Count sketch [26], etc. [27–29].

Table 1: Notation

Symbol Meaning

𝑛 The number of local devices

𝑉𝑖 The local value vector in local device 𝑖

𝑉𝑖 The estimated value vector of 𝑉𝑖
𝑉 The global value vector, 𝑉 =

∑
𝑖 𝑉𝑖

𝑉 The estimated value vector of 𝑉

𝑚 The length of value vectors

𝑣𝑖, 𝑗 The 𝑗-th value in 𝑉𝑖
𝑣̂𝑖, 𝑗 The estimated value of 𝑣𝑖, 𝑗
𝑝𝑖, 𝑗 The sampling probability of 𝑣𝑖, 𝑗
𝐼𝑖, 𝑗 The indicator of whether 𝑣𝑖, 𝑗 is sampled

𝑞𝑖, 𝑗 The sampling priority of 𝑣𝑖, 𝑗
𝑟𝑖, 𝑗 The random number in range (0, 1) for 𝑣𝑖, 𝑗
𝐶𝑖 The parameter in MinMax Sampling in device 𝑖

𝐾𝑖 The expected number of values

transmitted in device 𝑖

all estimated values. Therefore, we proposeMinMaxopt, an unbiased

sampling scheme that can minimize the maximum variance of all

values, and we prove its optimality through theoretical analysis.

However, MinMaxopt does not meet the other two requirements:

fast computation and adaptive transmission.

Based on MinMaxopt, we propose adaptive MinMax Sampling

(MinMax
adp

), which trades little accuracy for the other two require-

ments. MinMaxopt independently determines whether each value in

the local value vector should be sampled according to a probability.

It can only guarantee the expected number of sampled values, but

the actual size of the local summary is variable and uncontrollable.

Differently, MinMax
adp

calculates a sampling priority for each value

using a stochastic formula and then takes the 𝐾 values with the

largest priority as the local summary, where 𝐾 can be customized

and dynamically changed. Therefore, MinMax
adp

can flexibly con-

trol the size of the local summary. Because the 𝐾-th priority can be

selected in linear time complexity, we reduce the time complexity

from𝑂 (𝑚 log(1/𝜀)) of MinMaxopt to𝑂 (𝑚) of MinMax
adp

, where𝑚

is the size of local value vector, and 𝜀 is the accuracy of calculating

probability. As for the accuracy of MinMax
adp

, we prove that it is

unbiased, and its variance is near-optimal. The experimental results

show that the variance gap between MinMaxopt and MinMax
adp

is

within 0.05%.

1.4 Main Contribution
• We propose MinMax Sampling, which contains two versions.

MinMaxopt achieves optimal accuracy, while MinMax
adp

meets

the requirements of fast computation and adaptive transmission

with near-optimal accuracy.

• We make abundant theoretical analyses for both MinMaxopt

and MinMax
adp

, prove their unbiasedness and optimality/near-

optimality, and provide error bounds.

• We evaluate MinMax
adp

in three applications: Federated learn-

ing, Distributed State Aggregation, and Hierarchical Aggregation.

Our experimental results show MinMax
adp

is superior to exist-

ing algorithms (8.44× better accuracy on average) in all three

applications.

2 PRELIMINARY
In this section, we first present a formal definition of the global ag-

gregation problem. Then, because our solution is a sampling-based

communication scheme, we show preliminary notations and defini-

tions in the sampling model and formalize three requirements in

such a sampling model. For convenience, we list symbols frequently

used in this paper and their meanings in Table 1.

Definition 2.1. (Global value vector) Given𝑛 local devices, each
local device 𝑖 contains a value vector

𝑉𝑖 =
〈
𝑣𝑖,1, 𝑣𝑖,2, · · · , 𝑣𝑖,𝑚

〉
,

where each value 𝑣𝑖, 𝑗 corresponds to the 𝑗-th local value in device

𝑖 . The global value vector

𝑉 =

𝑛∑
𝑖=1

𝑉𝑖 =

〈
𝑛∑
𝑖=1

𝑣𝑖,1, · · · ,
𝑛∑
𝑖=1

𝑣𝑖,𝑚

〉
A communication scheme includes an encoding procedure for

local devices and a decoding procedure for the central device. In one

communication, each local device 𝑖 calls the encoding procedure

to generate an approximate summary 𝑉𝑖 of the local value vector

𝑉𝑖 . The central device collects all local summaries and calls the

decoding procedure to generate a global summary/estimation 𝑉

based on the summary of 𝑉𝑖 of each device 𝑖 .

Sampling model: Given a value vector 𝑉𝑖 =
〈
𝑣𝑖,1, · · · , 𝑣𝑖,𝑚

〉
in

device 𝑖 , a random sampling scheme is to generate a random variable

vector 𝑉𝑖 =
〈
𝑣̂𝑖,1, · · · , 𝑣̂𝑖,𝑚

〉
, where 𝑣̂𝑖, 𝑗 is called the estimated value

of 𝑣𝑖, 𝑗 . We use 𝐼𝑖, 𝑗 to indicate whether 𝑣𝑖, 𝑗 is sampled or not, where

𝐼𝑖, 𝑗 =

{
0, 𝑣̂𝑖, 𝑗 = 0

1, 𝑣̂𝑖, 𝑗 ≠ 0

. (1)

We call value 𝑣𝑖, 𝑗 sampled when 𝐼𝑖, 𝑗 = 1, and vice versa. The

sampling-based communication scheme uses sampling as the en-

coding procedure, and transmits the 𝑣̂𝑖, 𝑗 of the sampled values and

the corresponding indexes. Let 𝑝𝑖, 𝑗 = Pr[𝐼𝑖, 𝑗 = 1] be the sampling

probability of value 𝑣𝑖, 𝑗 . The transmission cost of device 𝑖 , i.e., the
number of values sampled, is

∑𝑚
𝑗=1 𝐼𝑖, 𝑗 , and it has a mathematical

expectation with a value of

∑𝑚
𝑗=1 𝑝𝑖, 𝑗 .

Formalization of requirements: For a communication scheme

based on sampling, we formalize the three design requirements as

follows:

• Fast: Given a local value vector with𝑚 values, the time complex-

ity of the sampling scheme should be 𝑂 (𝑚). In other words, we

should finish the sampling in a constant time of traversing all

non-zero values.

• Adaptive: Ideally, given any integer 𝐾𝑖 , the sampling scheme in

device 𝑖 should strictly sample 𝐾𝑖 values, i.e.,
∑𝑚
𝑗=1 𝐼𝑖, 𝑗 = 𝐾𝑖 . The

varying number of sampled values will lead to insufficient use

of available bandwidth (< 𝐾𝑖), or excessive transmission (> 𝐾𝑖).

Further, the sampling scheme should be able to dynamically

adjust the number of sampled values to cope with the WAN

bandwidth that varies a lot over time.

• Accurate: 1) The sampling scheme should be unbiased, i.e., for
any 𝑖 and 𝑗 , 𝐸 [𝑣̂𝑖, 𝑗] = 𝑣𝑖, 𝑗 . The bias will grow linearly as the num-

ber of devices increasing, while the unbiased sampling scheme

is scalable due to the law of large numbers. Compared with the

biased scheme, the more devices, the more accurately the unbi-

ased sampling perform. 2) The sampling scheme of each device 𝑖

should minimize the maximum variance of all estimated values,

i.e., minmax
𝑛
𝑗=1

𝐷 [𝑣̂𝑖, 𝑗].

3 MINMAX SAMPLING
In this section, we first design MinMaxopt which can achieve opti-

mal accuracy. Then, we propose MinMax
adp

based on MinMaxopt,

which trades off little accuracy to be both fast and adaptive. Finally,

we propose outlier elimination, an optimization that works on the

central device to achieve more accurate aggregation.

3.1 Optimal Version
Sampling process of MinMaxopt: In any device 𝑖 , given local

value vector𝑉𝑖 and constant𝐶𝑖 , MinMaxopt sets the sampling prob-

ability 𝑝𝑖, 𝑗 of 𝑣𝑖, 𝑗 as

𝑝𝑖, 𝑗 =
𝑣2
𝑖, 𝑗

𝑣2
𝑖, 𝑗

+𝐶𝑖
, (2)

If 𝑣𝑖, 𝑗 is sampled, the estimated value 𝑣̂𝑖, 𝑗 is set to
𝑣𝑖,𝑗
𝑝𝑖,𝑗

to achieve

unbiasedness. To set the expected sample size

∑𝑚
𝑗=1 𝑝𝑖, 𝑗 = 𝐾𝑖 , we

can set 𝐶𝑖 as the solution of the following equation

𝑚∑
𝑗=1

𝑣2
𝑖, 𝑗

𝑣2
𝑖, 𝑗

+𝐶𝑖
= 𝐾𝑖 . (3)

Example ofMinMaxopt (Figure 1): In this example, the local vec-

tor vector 𝑉𝑖 = ⟨4.52, 3.13, 0.89, 0.66, 0.31, 0.16⟩, and the expected

number of sampled values is 𝐾𝑖 = 3. MinMaxopt first obtains the

constant 𝐶𝑖 = 0.68 according to Formula 3, and calculates the sam-

pling probability being ⟨0.97, 0.93, 0.54, 0.39, 0.13, 0.04⟩ according
to Formula 2. As shown in the figure, MinMaxopt samples 4 values

{𝑣𝑖,1 : 4.51, 𝑣𝑖,2 : 3.13, 𝑣𝑖,4 : 0.66, 𝑣𝑖,5 : 0.31}, and obtains that the

estimated values of all values are ⟨4.67, 3.35, 0, 1.69, 2.48, 0⟩.

Sampled

𝑣!: 4.52
𝑤. 𝑝. 97%

𝑣": 3.13
𝑤. 𝑝. 93%

𝑝# =
𝑣#"

𝑣#" + 𝐶
𝐶 = arg$ ∑𝑝# = 3 = 0.68

𝑣%: 0.89
𝑤. 𝑝. 54%

𝑣&: 0.66
𝑤. 𝑝. 39%

𝑣': 0.31
𝑤. 𝑝. 13%

𝑣(: 0.16
𝑤. 𝑝. 4%

Figure 1: Example of MinMaxopt.
Then we analyze some properties of the MinMaxopt. We first

show the variance 𝐷 [𝑣̂𝑖, 𝑗] of each estimated value 𝑣̂𝑖, 𝑗 .

Theorem 3.1.

𝐷 [𝑣̂𝑖, 𝑗] =
{
0, 𝑣𝑖, 𝑗 = 0

𝐶𝑖 , 𝑣𝑖, 𝑗 ≠ 0

. (4)

Proof. Based on the definition of 𝑝𝑖, 𝑗 , if 𝑣𝑖, 𝑗 = 0, 𝑝𝑖, 𝑗 = 0 and

𝑣̂𝑖, 𝑗 is always 0. If 𝑣𝑖, 𝑗 ≠ 0,

𝐷 [𝑣̂𝑖, 𝑗] = 𝑝𝑖, 𝑗 ·
(
𝑣𝑖, 𝑗

𝑝𝑖, 𝑗
− 𝑣𝑖, 𝑗

)
2

+ (1 − 𝑝𝑖, 𝑗) · 𝑣2𝑖, 𝑗 = 𝐶𝑖

□

Variance of MinMaxopt (Theorem 3.1): This theorem shows the

fairness of the variance in MinMaxopt, i.e., for all non-zero local val-
ues, their variances are all 𝐶𝑖 . In addition, such variance is friendly

to some applications where the value vector is sparse (i.e., most

values in the vector is 0), because the MinMaxopt will not bring

additional error to their estimated value. Note that for prior sketch-

based schemes [26], even if the local value is 0, there is still an

additional error in their estimated value. Then, we will show the

bound of 𝐶𝑖 .

Theorem 3.2. Given the expected sample size 𝐾𝑖 ,

∥𝑉𝑖 ∥22
𝐾𝑖

− 𝑚
max

𝑗=1
𝑣2𝑖, 𝑗 ⩽ 𝐶𝑖 ⩽

∥𝑉𝑖 ∥22
𝐾𝑖

−
𝑚
min

𝑗=1
𝑣2𝑖, 𝑗 , (5)

where ∥𝑉𝑖 ∥22 =
∑𝑚
𝑗=1 𝑣

2

𝑖, 𝑗
.

Proof. Let

𝐶1 =
∥𝑉𝑖 ∥22
𝐾𝑖

− 𝑚
max

𝑗=1
𝑣2𝑖, 𝑗

𝑚∑
𝑗=1

𝑣2
𝑖, 𝑗

𝑣2
𝑖, 𝑗

+𝐶1
⩾

𝑚∑
𝑗=1

𝐾𝑖 · 𝑣2𝑖, 𝑗
∥𝑉𝑖 ∥22

= 𝐾𝑖

Similarly, let

𝐶2 =
∥𝑉𝑖 ∥22
𝐾𝑖

−
𝑚
min

𝑗=1
𝑣2𝑖, 𝑗

𝑚∑
𝑗=1

𝑣2
𝑖, 𝑗

𝑣2
𝑖, 𝑗

+𝐶2
⩽

𝑚∑
𝑗=1

𝐾𝑖 · 𝑣2𝑖, 𝑗
∥𝑉𝑖 ∥22

= 𝐾𝑖 .

In view of the monotonicity of the Formula with respect to 𝐶𝑖 , we

can obtain

∥𝑉𝑖 ∥22
𝐾𝑖

− 𝑚
max

𝑗=1
𝑣2𝑖, 𝑗 ⩽ 𝐶𝑖 ⩽

∥𝑉𝑖 ∥22
𝐾𝑖

−
𝑚
min

𝑗=1
𝑣2𝑖, 𝑗 .

□

Range of variance (Theorem 3.2): This theorem bounds the vari-

ance of the estimated value, and shows the relationship between

the variance and the value vector. Although we cannot directly

show the explicit formula of 𝐶𝑖 , we can prove the range it will lie

in. The variance of MinMaxopt can be bounded by the second norm

of the value vector.

Afterward, we show that the accuracy of our MinMaxopt is opti-

mal. We start with a special sampling scheme, poisson sampling.

Definition 3.3. (Poisson sampling) In poisson sampling, each

estimated value 𝑣̂𝑖, 𝑗 is defined as a random variable with only two

values, namely

𝑣̂𝑖, 𝑗 =

{ 𝑣𝑖,𝑗
𝑝𝑖,𝑗

, w.p. 𝑝𝑖, 𝑗

0, w.p. 1 − 𝑝𝑖, 𝑗
. (6)

In other words, each value 𝑣𝑖, 𝑗 has the probability of 𝑝𝑖, 𝑗 being

sampled with the estimated value of

𝑣𝑖,𝑗
𝑝𝑖,𝑗

.

The following Lemma 3.4 shows the optimality of poisson sam-

pling.

Lemma 3.4. For any unbiased sampling S, there must be a poisson
sampling S′ such that for any value 𝑣𝑖, 𝑗 , there is 𝐷 [𝑣̂𝑖, 𝑗 | S′] ⩽
𝐷 [𝑣̂𝑖, 𝑗 | S], where 𝐷 [𝑣̂𝑖, 𝑗 | S/S′] is the variance of the estimated
value 𝑣̂𝑖, 𝑗 under the sampling S/S′.

Proof. For any S, we first use Pr[𝐼𝑖, 𝑗 = 1 | S] to construct 𝑝𝑖, 𝑗
of poisson Sampling S′

.

𝐷 [𝑣̂𝑖, 𝑗 | S] − 𝐷 [𝑣̂𝑖, 𝑗 | S′] = 𝐸 [𝑣̂2𝑖, 𝑗 | S] − 𝐸 [𝑣̂
2

𝑖, 𝑗 | S
′]

Because 𝑣̂2
𝑖, 𝑗

is always 0 if 𝐼𝑖, 𝑗 = 0, we only need to consider the

case where 𝐼𝑖, 𝑗 = 1.

𝐸 [𝑣̂2𝑖, 𝑗 | S, 𝐼𝑖, 𝑗 = 1] − 𝐸 [𝑣̂2𝑖, 𝑗 | S
′, 𝐼𝑖, 𝑗 = 1]

=𝐸 [𝑣̂2𝑖, 𝑗 | S, 𝐼𝑖, 𝑗 = 1] −
(
𝑣𝑖, 𝑗

𝑝𝑖, 𝑗

)
2

=𝐸 [𝑣̂2𝑖, 𝑗 | S, 𝐼𝑖, 𝑗 = 1] − 𝐸2 [𝑣̂𝑖, 𝑗 | S, 𝐼𝑖, 𝑗 = 1]
=𝐷 [𝑣̂𝑖, 𝑗 | S, 𝐼𝑖, 𝑗 = 1]
⩾0.

Finally, we have 𝐷 [𝑣̂𝑖, 𝑗 | S] ⩾ 𝐷 [𝑣̂𝑖, 𝑗 | S′] □

Note that MinMaxopt belongs to poisson sampling, and then we

prove the optimality of MinMaxopt.

Theorem 3.5. Given the expected sample size 𝐾𝑖 , the sampling
scheme MinMaxopt can minimize the maximum variance.

Proof. We first prove that MinMaxopt is the optimal poisson

sampling to minimize the maximum variance. In a sampling scheme

S, restricting the maximum variance of all estimated values smaller

than 𝐶𝑖 is actually equivalent to restricting the variance of each

estimated value smaller than 𝐶𝑖 . Suppose that in poisson sampling

scheme S, for all value 𝑣𝑖, 𝑗 , there is 𝐷 [𝑣̂𝑖, 𝑗 | S] < 𝐶𝑖 , so

𝐷
[
𝑣̂𝑖, 𝑗 | S

]
=

(
1 − 1

𝑝𝑖, 𝑗

)
𝑣2𝑖, 𝑗 < 𝐶𝑖 .

In order to make it hold, we need to set each sampling probability

𝑝𝑖, 𝑗 >
𝑣2
𝑖, 𝑗

𝑣2
𝑖, 𝑗

+𝐶𝑖
.

In other words, under the sampling scheme S, the expected sam-

ple size

∑𝑚
𝑗=1 𝑝𝑖, 𝑗 > 𝐾𝑖 . This means that our sampling scheme

MinMaxopt is the optimal poisson sampling when the expected

sample size is 𝐾𝑖 .

Based on Theorem 3.4, we can get that if there is an unbiased

sampling scheme S′
which can achieve maximum variance 𝐶 ′

𝑖
<

𝐶𝑖 , there must be a poisson sampling scheme which can achieve

maximum variance𝐶 ′′
𝑖
⩽ 𝐶 ′

𝑖
< 𝐶𝑖 . It contradicts that MinMaxopt is

the optimal poisson sampling when the expected sample size is 𝐾𝑖 .

Therefore, MinMaxopt is the optimal unbiased sampling when the

expected sample size is 𝐾𝑖 . □

Optimality of MinMaxopt (Theorem 3.5): This theorem shows

the optimality of MinMaxopt. MinMaxopt can guarantee that the

variance of any estimated value is not larger than 𝐶𝑖 . Note that

none of the prior sampling schemes is designed for minimizing the

maximum variance. Therefore, the MinMaxopt is the first optimal

sampling scheme that can achieve minimal maximum variance.

Limitations of MinMaxopt: Note that although the accuracy of

MinMaxopt is optimal, it is unable to be fast and adaptive.

• Not Fast enough: The computational bottleneck of MinMaxopt

is to calculate the constant 𝐶 by solving Equation 3. A straw-

man approach is to use binary search, whose time complexity is

𝑂 (𝑚 log
1

𝜀), where 𝜀 is the precision of the solution. As shown in

Table 2, in MinMaxopt, calculating 𝐶 takes about 85% of the time.

• Not Adaptive enough:MinMaxopt can only guarantee that the

expected number of samples is 𝐾𝑖 , but the actual number of

samples is variable. Formany local devices in a distributed system,

the communication bottleneck is often the slowest one. As shown

in Figure 2, although we set the 𝐾𝑖 of all devices to 100, when

the number of devices exceeds 2000, the most unfortunate device

will transmit 30% more. The excessive transmission will lead to

packet loss in WAN, resulting in performance degradation [34].

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 01 2 0

1 2 5

1 3 0

1 3 5

ma
x (

s
am

ple
s)

d e v i c e s
Figure 2: The variation of themaximumnumber of sampled
values with the number of local devices.

3.2 Adaptive Version
To achieve all three design requirements of the communication

scheme, we propose MinMax
adp

based on MinMaxopt, which trades

off little accuracy to be both fast and adaptive. We show that

MinMax
adp

can generate a local summary of any desired size. Fur-

ther, it can modify the size transmitted on the fly, i.e., it can transmit

a growing local summary until a predetermined time is reached or

a termination signal is received. It can also work when the values

are streaming generated.

Algorithm 1:MinMax
adp

for device 𝑖 .

Input: number of value𝑚, local value vector 𝑉𝑖 , number of

sampled value 𝐾𝑖
1 𝑅𝑖 = rand(𝑚);
2 𝑄𝑖 = (1/𝑅𝑖 − 1) ·𝑉𝑖 ·𝑉𝑖 ;
3 𝐶𝑖 = kth(𝑄𝑖 , 𝐾𝑖 + 1);
4 𝑉𝑖 = where(𝑄𝑖 > 𝐶𝑖 ,𝑉𝑖 +𝐶𝑖/𝑉𝑖 , zeros(𝑚));

Sampling process of MinMaxadp: In any device 𝑖 , given the local
value vector 𝑉𝑖 and the required sample size 𝐾𝑖 , MinMax

adp
first

generates𝑚 random numbers 𝑟𝑖,1, · · · , 𝑟𝑖,𝑚 uniformly distributed

between 0 and 1, and calculates the priority of𝑚 value

𝑞𝑖, 𝑗 =

(
1

𝑟𝑖, 𝑗
− 1

)
· 𝑣2𝑖, 𝑗 (7)

MinMax
adp

chooses 𝐾𝑖 values with the largest 𝑞𝑖, 𝑗 as the sampled

values, and sets 𝐶𝑖 as the (𝐾𝑖 + 1)-th largest 𝑞𝑖, 𝑗 . Then, same as in

MinMaxopt, for value 𝑣𝑖, 𝑗 not being sampled, 𝑣̂𝑖, 𝑗 = 0, while for the

the value 𝑣𝑖, 𝑗 being sampled, 𝑣̂𝑖, 𝑗 =
𝑣2𝑖,𝑗+𝐶𝑖

𝑣𝑖,𝑗
.
3
Algorithm 4 shows the

pseudo-code of MinMax
adp

.

𝑞! =
1
𝑟!
− 1 𝑣!"

𝐶 = 4𝑡ℎ 𝑞! = 0.38

𝑞": 10.2 𝑞#: 5.15 𝑞$: 2.36 𝑞%: 0.38 𝑞&: 0.24 𝑞': 0.01

𝑣#: 4.52
𝑟#: 0.80

𝑣": 3.13
𝑟": 0.49

𝑣%: 0.89
𝑟%: 0.68

𝑣&: 0.31
𝑟&: 0.29

𝑣': 0.16
𝑟': 0.74

Sampled
𝑣$: 0.66
𝑟$: 0.16

Figure 3: Example of MinMaxadp.
Example of MinMaxadp (Figures 3): In this example, the lo-

cal vector vector 𝑉𝑖 = ⟨4.52, 3.13, 0.89.0.66, 0.31, 0.16⟩, and the ex-

pected number of sampled values is 𝐾𝑖 = 3. MinMax
adp

first gener-

ates 6 random numbers ⟨0.80, 0.49, 0.68, 0.16, 0.29, 0.74⟩ uniformly

distributed in [0, 1], and calculates that the sampling priority is

⟨5.15, 10.2, 0.38, 2.36, 0.24, 0.01⟩ according to Formula 7. MinMax
adp

takes the fourth largest priority 0.38 as constant 𝐶𝑖 , samples three

values {𝑣𝑖,2 : 4.52, 𝑣𝑖,1 : 3.13, 𝑣𝑖,4 : 2.36} with the largest three

priorities, and obtains that the estimated values of all values are

⟨4.61, 3.25, 0, 1.24, 0, 0⟩.
Advantages over MinMaxopt:
• Fast: MinMax

adp
holds linear time complexity because there

are 𝑂 (𝑚) complexity algorithms [35, 36] to select the (𝑘 + 1)-th
largest priority from𝑚 priorities. As shown in Table 2, compared

with MinMaxopt, the time for finding𝐶 in MinMax
adp

is reduced

by 94%, and the total time is reduced by 77%.

Table 2: The comparison of computing time, using a value
vector containing 2.6 × 10

5 values.

Computing Time (ms) Finding 𝐶 Others All

MinMaxopt 16.47 2.85 19.32

MinMax
adp

0.96 3.44 4.40

• Adaptive:MinMax
adp

can work in the following three modes.

(1) Basic mode — both 𝐾𝑖 and the entire 𝑉𝑖 are given in advance.

MinMax
adp

works as described above.

(2) Incremental mode — the entire 𝑉𝑖 is given, but 𝐾𝑖 is unknown.

MinMax
adp

calculates and sorts all priorities, and sends values

in the order of priority from large to small, until the predeter-

mined transmission time is reached, or the termination signal

from the central device is received. MinMax
adp

then sets 𝐶𝑖
as the maximum priority not transmitted, and sends 𝐶𝑖 to the

central device.

(3) Streaming mode — 𝐾𝑖 is given, but values are streaming gener-

ated. MinMax
adp

calculates the priority of each arriving value,

and inserts it into a min-heap of size 𝐾𝑖 + 1 according to the

priority. When the stream ends, MinMax
adp

transmits 𝐾𝑖 val-

ues with the largest priority in the heap, and sets 𝐶𝑖 as the

smallest priority in the heap.

3
In this paper, we define the result of division by 0 as 0 for convenience.

Incremental mode enables MinMax
adp

to fully utilize the band-

width when bandwidth sharply varies, and streaming mode en-

ables MinMax
adp

to save memory when the local values are

streaming generated.

Intuition behind MinMaxadp: Note that in MinMaxopt, we

should sample each value 𝑣𝑖, 𝑗 with probability 𝑝𝑖, 𝑗 . Specifically,

we need to generate a random number 𝑟𝑖, 𝑗 uniformly distributed

between 0 and 1 for each 𝑣𝑖, 𝑗 , and sample it if and only if

𝑟𝑖, 𝑗 < 𝑝𝑖, 𝑗 =
𝑣2
𝑖, 𝑗

𝑣2
𝑖, 𝑗

+𝐶𝑖
.

After a form change of the above formula, we can get that, 𝑣𝑖, 𝑗 is

sampled if and only if

𝐶𝑖 <

(
1

𝑟𝑖, 𝑗
− 1

)
· 𝑣2𝑖, 𝑗 (8)

Based on the above formula, we implement MinMax
adp

which can

adjust 𝐶𝑖 to get exact 𝐾𝑖 samples. We set 𝑞𝑖, 𝑗 =

(
1

𝑟𝑖,𝑗
− 1

)
· 𝑣2
𝑖, 𝑗

as

the priority of the 𝑣𝑖, 𝑗 and set 𝐶𝑖 as the (𝐾𝑖 + 1)-th largest priority.

According to Equation 8, MinMax
adp

will only sample 𝐾𝑖 values

with the largest priority.

Note that although MinMax
adp

is proposed based on the trans-

formation of MinMaxopt, its performance is different from that of

MinMaxopt. With the constriction of fixed size, MinMax
adp

cannot

minimize the maximum variance as that of MinMaxopt. However,

MinMax
adp

still inherits some properties of MinMaxopt.

Theorem 3.6. The sampling scheme MinMaxadp is an unbiased
sampling.

Proof. Let 𝑅𝑖 (𝑗) = {𝑟𝑖,1, · · · , 𝑟𝑖, 𝑗−1, 𝑟𝑖, 𝑗+1, · · · , 𝑟𝑖,𝑚}. We first

prove that

𝐸

[
𝑣̂𝑖, 𝑗 | 𝑅𝑖 (𝑗)

]
= 𝑣𝑖, 𝑗 ,

and without losing generality, we assume that the priority of the

other𝑚 − 1 values satisfies the order

𝑞𝑖,1 > · · · > 𝑞𝑖, 𝑗−1 > 𝑞𝑖, 𝑗+1 > 𝑞𝑖,𝑚 .

Under this assumption, we have

Pr[𝐼𝑖, 𝑗 = 1 | 𝑅𝑖 (𝑗)]

= Pr

[
𝑞𝑖, 𝑗 =

(
1

𝑟𝑖, 𝑗
− 1

)
· 𝑣2𝑖, 𝑗 > 𝑞𝑖,𝐾𝑖

| 𝑅𝑖 (𝑗)
]

= Pr

[
𝑟𝑖, 𝑗 <

𝑣2
𝑖, 𝑗

𝑣2
𝑖, 𝑗

+ 𝑞𝑖,𝐾𝑖

]
=

𝑣2
𝑖, 𝑗

𝑣2
𝑖, 𝑗

+ 𝑞𝑖,𝐾𝑖

,

where 𝐼𝑖, 𝑗 indicates whether 𝑣𝑖, 𝑗 is sampled as defined above. And

when it is sampled, sampling scheme MinMax
adp

sets 𝐶𝑖 to the

(𝐾𝑖 + 1)-th largest priority, that is, 𝐶𝑖 = 𝑞𝑖,𝐾𝑖
, so that we have

𝐸

[
𝑣̂𝑖, 𝑗 | 𝑅𝑖 (𝑗)

]
= Pr

[
𝐼𝑖, 𝑗 = 1 | 𝑅𝑖 (𝑗)

]
· 𝐸

[
𝑣̂𝑖, 𝑗 | 𝐶𝑖 = 𝑞𝑖,𝐾𝑖

, 𝐼𝑖, 𝑗 = 1

]
=

(
𝑣2
𝑖, 𝑗

𝑣2
𝑖, 𝑗

+ 𝑞𝑖,𝐾𝑖

)
·
(
𝑣𝑖, 𝑗 +

𝑞𝑖,𝐾𝑖

𝑣𝑖, 𝑗

)
= 𝑣𝑖, 𝑗 .

Note that the above proof is only applicable when 𝑣𝑖, 𝑗 is non-zero.

But when 𝑣𝑖, 𝑗 is zero, the sampling probability and estimated value

𝑣̂𝑖, 𝑗 are equal to 0, so the conclusion also holds. In addition, we note

that the above conclusion dose not depend on the values of random

numbers in 𝑅𝑖 (𝑗), so we have

𝐸 [𝑣̂𝑖, 𝑗] = 𝐸
[
𝑣̂𝑖, 𝑗 | 𝑅𝑖 (𝑗)

]
= 𝑣𝑖, 𝑗

Thus sampling scheme MinMax
adp

is unbiased sampling. □

Although MinMax
adp

cannot achieve the optimal variance like

MinMaxopt, we show that it is still near-optimal by comparing its

variance with MinMaxopt through case study and experiments.

Theorem 3.7. In sampling scheme MinMaxadp,

𝐷 [𝑣̂𝑖, 𝑗] =
{
0, 𝑣𝑖, 𝑗 = 0

𝐸 [𝑄𝑖 (𝑗, 𝐾𝑖)], 𝑣𝑖, 𝑗 ≠ 0

. (9)

where

𝑄𝑖 (𝑗, 𝑘) = 𝑘𝑡ℎ
{
𝑞𝑖,1, · · · , 𝑞𝑖, 𝑗−1, 𝑞𝑖, 𝑗+1, · · · , 𝑞𝑖,𝑚

}
.

Proof. We first assume that the set 𝑅𝑖 (𝑗) has been determined,

and we only consider the randomness of 𝑟𝑖, 𝑗 , and deduce the form

of variance of 𝑣̂𝑖, 𝑗 under this condition. We have

𝐸

[
𝑣̂2𝑖, 𝑗 | 𝑅𝑖 (𝑗)

]
= Pr

[
𝐼𝑖, 𝑗 = 1 | 𝑅𝑖 (𝑗)

]
· 𝐸

[
𝑣̂2𝑖, 𝑗 | 𝐶𝑖 = 𝑄𝑖 (𝑗, 𝐾𝑖), 𝐼𝑖, 𝑗 = 1

]
=

(
𝑣2
𝑖, 𝑗

𝑣2
𝑖, 𝑗

+𝑄𝑖 (𝑗, 𝐾𝑖)

)
·
(
𝑣𝑖, 𝑗 +

𝑄𝑖 (𝑗, 𝐾𝑖)
𝑣𝑖, 𝑗

)
2

=𝑣2𝑖, 𝑗 +𝑄𝑖 (𝑗, 𝐾𝑖) .
Considering the unbiasedness of 𝑣̂𝑖, 𝑗 , we have

𝐷

[
𝑣̂𝑖, 𝑗 | 𝑅𝑖 (𝑗)

]
= 𝑄𝑖 (𝑗, 𝐾𝑖)

Because the above conclusion does not depend on the random

numbers in 𝑅𝑖 (𝑗), so we have

𝐷 [𝑣̂𝑖, 𝑗] = 𝐷
[
𝑣̂𝑖, 𝑗 | 𝑅𝑖 (𝑗)

]
= 𝐸 [𝑄𝑖 (𝑗, 𝐾𝑖)]

□

Variance of MinMaxadp (Theorem 3.7): This theorem shows

that although the variance of each 𝑣̂𝑖, 𝑗 in MinMax
adp

is different,

it has a common upper bound 𝐸 [𝐶𝑖], where 𝐶𝑖 is the 𝐾𝑖 -th largest

priority among all priorities.

Case study on uniform distribution: To better understand the

near-optimality of MinMax
adp

, we compare the variance between

MinMaxopt and MinMax
adp

in the case of uniform distribution.

Specifically, for any 𝑗 , 𝑣𝑖, 𝑗 = 𝑣𝑖,1 ≠ 0. For MinMaxopt, based on the

Formula 3 and Theorem 3.1, we have

𝐷 [𝑣̂𝑖, 𝑗] = 𝐶𝑖 =
𝑚 − 𝐾𝑖
𝐾𝑖

𝑣2𝑖,1 (10)

For MinMax
adp

, we first note that 1/𝑟𝑖, 𝑗 follows the Pareto distribu-
tion. Suppose that 𝑅(𝑘,𝑚) is the 𝑘-th largest 1/𝑟𝑖, 𝑗 among𝑚 1/𝑟𝑖, 𝑗 .
Based on the order statistics of Pareto distribution shown in prior

works [37], we have

𝐸 [𝑅(𝑘,𝑚)] = 𝑚

𝑘 − 1

.

Based on Formula 7 on 𝑞𝑖, 𝑗 and Theorem 3.7,

𝐷 [𝑣̂𝑖, 𝑗] = (𝐸 [𝑅(𝐾𝑖 ,𝑚 − 1)] − 1) · 𝑣2𝑖,1 =
𝑚 − 𝐾𝑖
𝐾𝑖 − 1

𝑣2𝑖,1 (11)

We can find that, in such case, MinMax
adp

is near-optimal. The vari-

ance of MinMax
adp

on 𝐾𝑖 samples is better than that of MinMaxopt

on 𝐾𝑖 − 1 samples.

We also compare the variances of MinMaxopt and MinMax
adp

in the real dataset. As shown in Figure 4, the difference between

the variances of the two schemes is within 0.05% in all cases.

0 . 0 3 . 0 x 1 0 4 6 . 0 x 1 0 4 9 . 0 x 1 0 4
0 . 0

2 . 5 x 1 0 - 4

5 . 0 x 1 0 - 4

7 . 5 x 1 0 - 4

1 . 0 x 1 0 - 3

C
K

 M i n M a x o p t M i n M a x a d p

Figure 4: The comparison of variances of MinMaxopt and
MinMaxadp, using a value vector containing 2.6× 10

5 values.

In addition to the near-optimal variance, our sampling scheme

MinMax
adp

also holds the weight sensitivity, that is to say, our

sampling scheme MinMax
adp

can ensure that larger values can be

sampled with a larger probability than smaller values.

Theorem 3.8. In sampling scheme MinMaxadp, if two non-zero
values satisfy 𝜌 = |𝑣𝑖, 𝑗 |/|𝑣𝑖,𝑘 | > 1, then there is

Pr[𝑞𝑖, 𝑗 < 𝑞𝑖,𝑘] =
𝜌2 · (2 · ln(𝜌) − 1) + 1

(𝜌2 − 1)2
, (12)

where 𝑞𝑖, 𝑗 and 𝑞𝑖,𝑘 are priorities.

Proof. The proof is shown in the following formula.

Pr[𝑞𝑖, 𝑗 < 𝑞𝑖,𝑘] = Pr

[(
1

𝑟𝑖, 𝑗
− 1

)
· 𝑣2𝑖, 𝑗 <

(
1

𝑟𝑖,𝑘
− 1

)
· 𝑣2𝑖, 𝑗

]
= Pr

[
𝑟𝑖,𝑘 <

𝑟𝑖, 𝑗 · 𝑣2𝑖,𝑘
(1 − 𝑟𝑖, 𝑗) · 𝑣2𝑖, 𝑗 + 𝑟𝑖, 𝑗 · 𝑣

2

𝑖,𝑘

]
=

∫
1

0

𝑟𝑖, 𝑗

(1 − 𝑟𝑖, 𝑗) · 𝜌2 + 𝑟𝑖, 𝑗
𝑑𝑟𝑖, 𝑗

=
𝜌2 · (2 · ln(𝜌) − 1) + 1

(𝜌2 − 1)2
.

□

3.3 Aggregation & Outlier Elimination
In this section, we introduce the properties of our sampling scheme

MinMax
adp

when aggregating the sampled local vectors of multiple

devices, and how to eliminate outliers after aggregation to further

improve the accuracy.

Aggregation: In each round of global aggregation, local device 𝑖

with local vector𝑉𝑖 runs MinMax
adp

to generate the local summary

𝑉𝑖 =
〈
𝑣̂𝑖,1, 𝑣̂𝑖,2, · · · , 𝑣̂𝑖,𝑚

〉
.

Then, device 𝑖 transmits the sampled values 𝑣𝑖, 𝑗 (̂𝑣𝑖, 𝑗 ≠ 0), the

corresponding indexes, and the parameter 𝐶𝑖 . The central device

receives local summaries from 𝑛 local devices, and estimates the

global value vector 𝑉 using the following formula

𝑉 =

𝑛∑
𝑖=1

𝑉𝑖 =

𝑛∑
𝑖=1

(
𝑉𝑖 +

𝐶𝑖

𝑉𝑖

)
. (13)

According to Theorem 3.6 and 3.7,

∑𝑛
𝑖=1 𝑣̂𝑖, 𝑗 is an unbiased estimate

of

∑𝑛
𝑖=1 𝑣𝑖, 𝑗 , and 𝐸 [

∑𝑛
𝑖=1𝐶𝑖] is an upper bound of 𝐷 [∑𝑛𝑖=1 𝑣̂𝑖, 𝑗]. We

then give the following properties about the variance.

Theorem 3.9. Assuming 𝐸 [𝐶𝑖] is an independent sample of ran-
dom variable C, and 𝐸 [C] < ∞, then for any global value

∑𝑛
𝑖=1 𝑣𝑖, 𝑗 ,

there is

lim

𝑛→∞
𝐷

[∑𝑛
𝑖=1 𝑣̂𝑖, 𝑗√
𝑛

]
→ 𝑂 (1). (14)

Proof. According to the theorem of large numbers, we have

lim𝑛→∞
∑𝑛

𝑖=1 𝐸 [𝐶𝑖]
𝑛 = 𝐸 [C] . Then according to Theorem 3.7, we

have lim𝑛→∞ 𝐷

[∑𝑛
𝑖=1 𝑣̂𝑖,𝑗√
𝑛

]
⩽ lim𝑛→∞ 1

𝑛𝐸 [
∑𝑛
𝑖=1𝐶𝑖] → 𝑂 (1) . □

Scalable of aggregation (Theorem 3.9): This theorem shows

that, the error of MinMax
adp

grows sub-linearly (i.e.,𝑂 (
√
𝑛)) as the

number of devices increases. Note that, for prior sketch-based com-

munication scheme (e.g., FetchSGD [20]) being unbiased or other

schemes being biased [25, 38], their error often grows linearly (i.e.,
𝑂 (𝑛)) as the number of devices increases.

0 . 1 % 1 % 1 0 % 1 0 0 %
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Ab
so

lut
e E

rro
r

 w / o u t l i e r e l i m i n a t i o n
 w / o o u t l i e r e l i m i n a t i o n

(a) Distribution of absolute errors.

0 . 1 % 1 % 1 0 % 1 0 0 %
0

6 0

1 2 0

1 8 0

2 4 0

Re
lat

ive
 Er

ror

 w / o u t l i e r e l i m i n a t i o n
 w / o o u t l i e r e l i m i n a t i o n

(b) Distribution of related errors.

Figure 5: The distribution of absolute error and relative error
with and without outlier elimination. We set the estimated
value with outlier degree greater than 100 to 0, as shown in
figure, which significantly reduces the top 0.1% error.
Outlier Elimination: Although MinMax

adp
minimize the max-

imum variance, there are still some cases that the gap between

estimated global value and real global value is large. Such cases

happen with small probability, but may significantly degrade the

accuracy once it happens. Therefore, we filter such outliers after

we receive all the local summaries to make our accuracy more

stable. We filter outliers based on the idea of hypothesis testing.

We first assume that the estimated global value is equal to the real

global value, i.e., our estimation on such global value vector is to-

tally correct. Then, we estimate whether the estimated value meets

our expectation. If it does not meet the expectation, we reject the

assumption and filter such estimated value. We expect to have(∑𝑛
𝑖=1 𝑣̂𝑖, 𝑗

)
3(∑𝑛

𝑖=1 𝑣̂𝑖, 𝑗
)
2 + 𝐷 [∑𝑛𝑖=1 𝑣̂𝑖, 𝑗] =

∑
𝑣̂𝑖,𝑗≠0

𝑣𝑖, 𝑗 . (15)

It is because that for a local device, and a value 𝑣𝑖, 𝑗 on it, we have

a probability of

𝑣2𝑖,𝑗

𝑣2
𝑖,𝑗
+𝐶𝑖

to transmit it to the central device. In the

other words, the expected value received by the central device is

𝑣3
𝑖,𝑗

𝑣2
𝑖,𝑗
+𝐶𝑖

. Therefore, we define the outlier degree of
∑𝑛
𝑖=1 𝑣̂𝑖, 𝑗 as((∑𝑛

𝑖=1 𝑣̂𝑖, 𝑗
)
3(∑𝑛

𝑖=1 𝑣̂𝑖, 𝑗
)
2 + ∑𝑛

𝑖=1𝐶𝑖

) ©­«
∑
𝑣̂𝑖,𝑗≠0

𝑣𝑖, 𝑗
ª®¬
−1

. (16)

The larger outlier degree is, the higher probability it is an outlier.

Interpretation of outlier degree: Based on the derivation of

outlier degree, we can roughly regard the threshold as the reciprocal

of the probability that the estimated global value is not an outlier.

Specifically, if we set the threshold to 100, we will eliminate the

estimated values with more than 99% probability of being outliers.

We often set the threshold to 100 in experiments.

Verification of outlier elimination (Figure 5): We verify that

outlier elimination can make our accuracy more stable as shown in

Figure 5. Eliminating outliers requires each local device to transmit

𝐶𝑖 to estimate the upper bound of variance 𝐷 [∑𝑛𝑖=1 𝑣̂𝑖, 𝑗]. However,
𝐶𝑖 and 𝐶𝑖 are very close, often within a gap less than 0.1%, so 𝐶𝑖

can be used instead of 𝐶𝑖 .

4 APPLICATIONS
In this section, we show how to applyMinMax Sampling to different

distributed applications, and take federated learning, distributed

state aggregation, and hierarchical aggregation as case studies.

Federated Learning: In federated learning, assuming that the

model contains𝑚 parameters, we let the local value vector be the

model gradient concatenated layer-by-layer. Assuming that there

are 𝑛 local devices, only 𝑛𝑝 of them may participate in computing

and communication in each iteration. We call these devices par-

ticipating devices. Different from the standard MinMax Sampling,

each participating device 𝑝𝑖 needs to transmit an additional𝐷𝑝𝑖 , i.e.,
the amount of training data it uses in this round. After receiving

the local summaries transmitted from all participating devices, the

Parameter Server, i.e., the central device, needs to calculate the

weighted average of all local summaries instead of directly adding

them up, i.e.,

𝑉 =

∑𝑛𝑝
𝑖=1

𝐷𝑝𝑖 ·𝑉𝑝𝑖∑𝑛𝑝
𝑖=1

𝐷𝑝𝑖

. (17)

Distributed State Aggregation: In distributed state aggregation,

we need to aggregate the local states of all local devices. We take

CDN as an example. For CDN, the local state is the access log, which

records the number of times each source IP accesses the server. We

let the local value vector cover the entire 32-bit IP domain (i.e.,
have a length of 2

32
), and the values in the vector are the number

of accesses from each address. For those IP addresses that have

not sent a request to the local device, the corresponding values in

the local value vector are 0. In practice, zero values do not occupy

local memory, and MinMax Sampling does not calculate sampling

probability or priority for them. After the central device obtains

the global summary, it can perform a variety of analysis tasks,

including 1) estimating global values: estimating the total number

of accesses from each source IP address; 2) finding global top-𝐾 :
finding 𝐾 source IP addresses that access the CDN most frequently.

Hierarchical Aggregation: In hierarchical aggregation, local de-

vices are often organized in the form of a rooted tree, and the

aggregation process happens from leaf devices to the root device

level-by-level. We first show that the unbiasedness of the MinMax

Sampling can be extended to hierarchical aggregation. Suppose

𝑛 leaf devices are connected to a common parent device, each of

which has a local value vector 𝑉𝑖 , and generates a corresponding

summary 𝑉𝑖 with the upper bound 𝐶𝑖 of variance. In the first level

aggregation, the parent device gets a summary 𝑉 =
∑𝑛
𝑖=1𝑉𝑖 . In the

second level aggregation, it generates a new summary 𝑉 with the

upper bound 𝐶 of variance, using 𝑉 from MinMax Sampling, then

we have

𝐸 [𝑣 𝑗] = 𝐸 [𝐸 [𝑣 𝑗 | 𝑣̂ 𝑗]] = 𝐸 [𝑣̂ 𝑗] =
𝑛∑
𝑖=1

𝑣𝑖, 𝑗 .

Similarly, we can also obtain the upper bound of the 𝐷 [𝑣 𝑗],

𝐷 [𝑣 𝑗] = 𝐸 [𝐸 [𝑣2𝑗 | 𝑣̂ 𝑗]] − 𝑣
2

𝑗 ⩽ 𝐸 [𝑣̂
2

𝑗 +𝐶] − 𝑣
2

𝑗 ⩽ 𝐶 +
𝑛∑
𝑖=1

𝐶𝑖 .

Therefore, when communicating with the device in the upper level,

the upper bound of variance transmitted by the parent device should

be 𝐶 + ∑𝑛
𝑖=1𝐶𝑖 rather than 𝐶 .

Extensions of MinMax Sampling: In addition to the SUM aggre-

gation discussed above, MinMax Sampling supports all aggrega-

tion operations which can be transformed to the combination of

weighted SUM. Note that COUNT and AVERAGE can both be trans-

formed to the weighted SUM. For example, MinMax Sampling can

support the COUNT by regarding the value of each key that is present
in each device to 1, others as 0. After aggregation, we can know

how many devices where each key exists.

5 EXPERIMENTAL RESULTS
We conduct experiments and compare our MinMax

adp
with other

algorithms on three different applications: federated learning, dis-

tributed state aggregation, and hierarchical aggregation.

5.1 Experiments on Federated Learning
In this subsection, we compare the performance of MinMax

adp

on federated learning with GSpar [39], top-𝐾 sparsification [38],

and FetchSGD (using Count sketches) [20]. We also compare the

algorithms with the ideal/uncompressed results.

Implementation:We implementMinMax
adp

and other algorithms

using PyTorch. For top-𝐾 sparsification and FetchSGD, the setting

is based on the recommendation of prior works [20, 38]. For Gspar,

we utilize the greedy approach and set the parameters based on

the recommendation of [39]. For MinMax
adp

, we utilize outlier

elimination and set the threshold to 100.

Datasets:
• CIFAR-10: CIFAR-10 [40] is an image classification dataset. It

consists of 60,000 32x32 color images in 10 classes and is divided

into 50,000 training images and 10,000 test images.We use Resnet-

9 [41] on CIFAR-10, which contains 6.5𝑀 parameters. We train

for 2400 iterations.

• FEMNIST: Federated EMNIST [42] is an image classification

dataset formed by partitioning EMNIST [43] such that each client

in FEMNIST contains characters written by a single person. It

consists of 805,263 images with 62 labels and is allocated to 3,550

workers. We use Resnet-101 [41] with layer normalization on

FEMNIST, which contains 40𝑀 parameters.

For FEMNIST, we allocate the data directly. For CIFAR-10, we

allocate the data in the following two ways:

• non-i.i.d: We first randomly select a main label for each worker,

then we randomly allocate each image to one worker accord-

ing to the following rule: workers with the same main label

have a higher probability of being assigned. More specifically,

80% images of the workers belong to the selected label, and

the remaining 20% belong to other labels. We use the non-i.i.d.

CIFAR-10 dataset to simulate federated learning in two settings.

Small-scale federated learning: 200 workers in total, with 5%

of workers participating in each iteration, and each worker uses

a local batch of size 50. Large-scale federated learning: 2000
workers in total, with 1% of workers participating in each itera-

tion, and each worker uses a local batch of size 25.

• i.i.d: We randomly allocate each image to one worker with equal

probability. We use the i.i.d. CIFAR-10 dataset to simulate dis-
tributed machine learning: 10 workers in total, with 100% of

workers participating in each iteration, and each worker uses a

local batch of size 50.

Evaluation on small-scale FL (Figure 6): The experimental re-

sults show that under the small-scale federated learning setting, the

test accuracy and test loss of MinMax
adp

are always closer to the

ideal results than other algorithms. As shown in Figure 6(a) and 6(b),

when varying the compression ratio, MinMax
adp

reduces the test

accuracy by 10.82% on average, while GSpar, top-𝐾 , and FetchSGD

reduce the accuracy by 14.06%, 28.44%, and 45.95%, respectively.

Meanwhile, the increased test loss of MinMax
adp

is 0.298, which

is 6.90 times lower than that of GSpar, top-𝐾 , and FetchSGD on

average. As shown in Figure 6(c) and 6(d), when the compression

ratio is 20, MinMax
adp

and GSpar have similar training processes

to ideal, and the difference between their test accuracy is less than

1.76%. On the other hand, the test accuracy of top-𝐾 and FetchSGD

are 10.11% and 6.09% lower than that of ideal, respectively.

Evaluation on large-scale FL (Figure 7 & 9): The experimental

results show that under the large-scale federated learning setting,

the test accuracy and test loss of MinMax
adp

are always closer to

the ideal results, compared with other algorithms. As shown in Fig-

ure 7(a) and 7(b), when varying the compression ratio, MinMax
adp

reduces the test accuracy by 11.09% on average, while GSpar, top-𝐾 ,

and FetchSGD reduce the accuracy by 13.12%, 21.61%, and 43.68%,

0 5 0 1 0 0 1 5 0 2 0 00 . 4

0 . 6

0 . 8 I d e a l : 0 . 8 5 7 4

Te
st

Ac
cu

rac
y

C o m p r e s s i o n R a t i o

 F e t c h S G D O u r s
 T o p - K G S p a r

(a) Test accuracy v.s. compression ratio

0 5 0 1 0 0 1 5 0 2 0 00 . 4

0 . 8

1 . 2

I d e a l : 0 . 4 3 1 5
Te

st
Lo

ss
C o m p r e s s i o n R a t i o

 F e t c h S G D O u r s
 T o p - K G S p a r

(b) Test loss v.s. compression ratio

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00

0 . 3

0 . 6

0 . 9

Te
st

Ac
cu

rac
y

i t e r a t i o n s

 F e t c h S G D O u r s
 T o p - K G S p a r I d e a l

(c) Test accuracy v.s. iterations (20 ×)

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
0 . 5

1

1 . 5

2

2 . 5

Te
st

Lo
ss

i t e r a t i o n s

 F e t c h S G D O u r s
 T o p - K G S p a r I d e a l

(d) Test loss v.s. iterations (20 ×)
Figure 6: Test accuracy & test loss on non-i.i.d CIFAR-10, Small-scale federated learning setting.

0 5 0 1 0 0 1 5 0 2 0 00 . 4

0 . 6

0 . 8 I d e a l : 0 . 8 7 1 3

Te
st

Ac
cu

rac
y

C o m p r e s s i o n R a t i o

 F e t c h S G D O u r s
 T o p - K G S p a r

(a) Test accuracy v.s. compression ratio

0 5 0 1 0 0 1 5 0 2 0 0
0 . 4

0 . 8

1 . 2

I d e a l : 0 . 3 9 7 4

Te
st

Lo
ss

C o m p r e s s i o n R a t i o

 F e t c h S G D O u r s
 T o p - K G S p a r

(b) Test loss v.s. compression ratio

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

0 . 3

0 . 6

0 . 9

Te
st

Ac
cu

rac
y

i t e r a t i o n s

 F e t c h S G D O u r s
 T o p - K G S p a r I d e a l

(c) Test accuracy v.s. iterations (20 ×)

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

0 . 5

1

1 . 5

2

2 . 5

Te
st

Lo
ss

i t e r a t i o n s

 F e t c h S G D O u r s
 T o p - K G S p a r I d e a l

(d) Test loss v.s. iterations (20 ×)
Figure 7: Test accuracy & test loss on non-i.i.d CIFAR-10, Large-scale federated learning setting.

0 5 1 0 1 5 2 0

0 . 7

0 . 8

0 . 9 I d e a l : 0 . 8 8 2

Te
st

Ac
cu

rac
y

C o m p r e s s i o n R a t i o

 F e t c h S G D O u r s
 T o p - K G S p a r

(a) Test accuracy v.s. compression ratio

0 5 1 0 1 5 2 0

0 . 4

0 . 5

0 . 6

0 . 7

I d e a l : 0 . 3 7 8 8

Te
st

Lo
ss

C o m p r e s s i o n R a t i o

 F e t c h S G D O u r s
 T o p - K G S p a r

(b) Test loss v.s. compression ratio

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00

0 . 3

0 . 6

0 . 9

Te
st

Ac
cu

rac
y

i t e r a t i o n s

 F e t c h S G D O u r s
 T o p - K G S p a r I d e a l

(c) Test accuracy v.s. iterations (20 ×)

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

0 . 5

1

1 . 5

2

2 . 5

Te
st

Lo
ss

i t e r a t i o n s

 F e t c h S G D O u r s
 T o p - K G S p a r I d e a l

(d) Test loss v.s. iterations (20 ×)
Figure 8: Test accuracy & test loss on i.i.d CIFAR-10, Distributed machine learning setting.

0 1 0 2 0 3 0 4 0 5 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

Te
st

Ac
cu

rac
y

C o m p r e s s i o n R a t i o

 O u r s F e t c h S G D

(a) Test accuracy.

0 1 0 2 0 3 0 4 0 5 0

1

2

3

4

Te
st

Lo
ss

C o m p r e s s i o n R a t i o

 O u r s F e t c h S G D

(b) Test loss.

Figure 9: Test accuracy & test loss v.s. compression ratio on
FEMNIST.
respectively. Meanwhile, the increased test loss of MinMax

adp
is

0.301, which is 1.29 times lower than that of GSpar, top-𝐾 , and

FetchSGD on average. As shown in Figure 7(c) and 7(d), when the

compression ratio is 20, MinMax
adp

and GSpar have similar training

processes to ideal, and the difference between their test accuracy is

less than 1.85%. On the other hand, the test accuracy of top-𝐾 and

FetchSGD are 7.53% and 5.4% lower than that of ideal, respectively.

Further, we also perform evaluations on the FEMNIST dataset. As

shown in Figure 9, on FEMNIST, when the compression ratio ex-

ceeds 25, the test accuracy of FetchSGD decreases sharply, and

its loss increases sharply. Meanwhile, the increasing compression

ratio has little effect on the accuracy and loss of MinMax
adp

. That’s

mainly because of the low accuracy of the Count sketch under a

high compression ratio. Therefore, FetchSGD can hardly transmit

the gradient with acceptable error.

Evaluation on distributed ML (Figure 8): The experimental

results show that under the distributed machine learning setting,

the test accuracy and test loss of ideal, MinMax
adp

, and GSpar

are similar. As shown in Figure 8(a) and 8(b), when varying the

compression ratio, MinMax
adp

and GSpar reduce the test accuracy

by less than 0.96% on average, while top-𝐾 and FetchSGD reduce the

accuracy by 2.47% and 5.78%, respectively. Meanwhile, the increased

test loss of MinMax
adp

and GSpar are less than 0.030, which is

14.3 times lower than that of top-𝐾 and FetchSGD on average. As

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 01 0 1

1 0 2

1 0 3

RM
SE

d e v i c e s

 C o u n t I c e b e r g
 O u r s T o p - K

(a) RMSE v.s. # devices.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

1 0 1

1 0 2

MA
E

d e v i c e s

 C o u n t I c e b e r g
 O u r s T o p - K

(b) MAE v.s. # devices.

0 4 8 1 2 1 6 2 0

1 0 1

1 0 2

1 0 3

RM
SE

C o m p r e s s i o n R a t i o

 C o u n t I c e b e r g
 O u r s T o p - K

(c) RMSE v.s. compression ratio.

0 4 8 1 2 1 6 2 0

1 0 1

1 0 2

MA
E

C o m p r e s s i o n R a t i o

 C o u n t I c e b e r g
 O u r s T o p - K

(d) MAE v.s. compression ratio.

Figure 10: Estimating global frequency on i.i.d CAIDA.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 01 0 1

1 0 2

1 0 3

RM
SE

d e v i c e s

 C o u n t I c e b e r g
 O u r s T o p - K

(a) RMSE v.s. # devices.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 01 0 0

1 0 1

1 0 2

MA
E

d e v i c e s

 C o u n t I c e b e r g
 O u r s T o p - K

(b) MAE v.s. # devices.

0 4 8 1 2 1 6 2 0

1 0 1

1 0 2

1 0 3

RM
SE

C o m p r e s s i o n R a t i o

 C o u n t I c e b e r g
 O u r s T o p - K

(c) RMSE v.s. compression ratio.

0 4 8 1 2 1 6 2 0

1 0 1

1 0 2

MA
E

C o m p r e s s i o n R a t i o

 C o u n t I c e b e r g
 O u r s T o p - K

(d) MAE v.s. compression ratio.

Figure 11: Estimating global frequency on non-i.i.d CAIDA.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 00 . 6

0 . 8

1 . 0

Pr
ec

isi
on

d e v i c e s

 C o u n t I c e b e r g
 O u r s T o p - K

(a) Precision v.s. # devices.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 01 0 2

1 0 3

1 0 4

MA
E

d e v i c e

 C o u n t I c e b e r g
 O u r s T o p - K

(b) MAE v.s. # devices.

0 4 8 1 2 1 6 2 0

0 . 8

1 . 0

Pr
ec

isi
on

C o m p r e s s i o n R a t i o

 C o u n t I c e b e r g
 O u r s T o p - K

(c) Precision v.s. compression ratio.

0 4 8 1 2 1 6 2 01 0 0

1 0 1

1 0 2

1 0 3

1 0 4

MA
E

C o m p r e s s i o n R a t i o

 C o u n t I c e b e r g
 O u r s T o p - K

(d) MAE v.s. compression ratio.

Figure 12: Finding global top-𝐾 on i.i.d CAIDA.

shown in Figure 7(c) and 7(d), when the compression ratio is 20,

MinMax
adp

and GSpar have similar training processes to ideal,

while the training process of FetchSGD is slower.

5.2 Experiments on Distributed State
Aggregation

In this subsection, we compare the performance of MinMax
adp

in distributed state aggregation with Iceberg sampling [9], top-𝐾

sampling [32], and the Count sketch [26]. We focus on two tasks:

estimating global frequency and finding global top-𝐾 .

Implementation:We simulate a distributed state aggregation pro-

cess of 500 local devices. We implement MinMax
adp

and other

algorithms using PyTorch. For MinMax
adp

, we use outlier elimina-

tion and set the threshold to 100. For Count sketches, we set the

number of rows to 3. For Iceberg sampling, we set 𝐷 to the number

of transmitted values.

Datasets: We use the traffic dataset collected from CAIDA [44] in

2018. Each packet is associated with a 5-tuple (<srcIP, dstIP, srcPort,

dstPort, protocol>). The dataset with a monitor time of one hour

contains 1.47×109 packets, 5.84×107 distinct 5-tuples, and 3.72×106
distinct srcIP. We allocate data in the following two ways:

• i.i.d: We randomly allocate each packet to one device, and count

the number of the packets of each srcIP on each local device. Each

local device contains 1.81 × 10
5 srcIP on average.

• non-i.i.d: We hash each packet to one device according to its

5-tuple. On each device, we also count the number of each srcIP.
Each local device contains 4.93 × 10

4 srcIP on average.

EstimatingGlobal Frequency (Figure 10-11): The experimental

results show that when estimating global frequency, MinMax
adp

achieves lower error compared with other algorithms. As shown in

Figure 10, on i.i.d dataset, the RMSE ofMinMax
adp

reaches 3.98, 4.04,

and 668 times lower than that of Iceberg, top-𝐾 sampling, and Count

on average, respectively; the MAE of MinMax
adp

reaches 1.83, 2.48,

and 1128 times lower, respectively. The RMSE and MAE of Count

are always larger than 15,000 and 2,000, respectively. As shown in

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 00 . 7

0 . 8

0 . 9

1 . 0

Pr
ec

isi
on

d e v i c e s

 C o u n t I c e b e r g
 O u r s T o p - K

(a) Precision v.s. # devices.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 01 0 2

1 0 3

1 0 4

MA
E

d e v i c e s

 C o u n t I c e b e r g
 O u r s T o p - K

(b) MAE v.s. # devices.

0 4 8 1 2 1 6 2 0

0 . 8

0 . 9

1 . 0

Pr
ec

isi
on

C o m p r e s s i o n R a t i o

 C o u n t I c e b e r g
 O u r s T o p - K

(c) Precision v.s. compression ratio.

0 4 8 1 2 1 6 2 01 0 1

1 0 2

1 0 3

1 0 4

MA
E

C o m p r e s s i o n R a t i o

 C o u n t I c e b e r g
 O u r s T o p - K

(d) MAE v.s. compression ratio.

Figure 13: Finding global top-𝐾 on non-i.i.d CAIDA.

0 5 0 1 0 0 1 5 0 2 0 0

6 0

8 0

1 0 0

1 2 0
w / o o u t l i e r e l i m i n a t i o n

RM
SE

O u t l i e r T h r e s h o l d
(a) RMSE v.s. threshold.

0 5 0 1 0 0 1 5 0 2 0 01 5

2 0

2 5
w / o o u t l i e r e l i m i n a t i o n

MA
E

O u t l i e r T h r e s h o l d
(b) MAE v.s. threshold.

Figure 14: The impact of the threshold for outlier elimina-
tion on the accuracy of distributed state aggregation tasks.

1 2 3 4 5
1 0 2

1 0 3

RM
SE

C o m p r e s s i o n R a t i o

 C o u n t I c e b e r g
 O u r s T o p - K

(a) RMSE.

1 2 3 4 5
1 0

1 0 0

MA
E

C o m p r e s s i o n R a t i o

 C o u n t I c e b e r g
 O u r s T o p - K

(b) MAE.

Figure 15: Estimating global frequency in hierarchical aggre-
gation.

1 2 3 4 5

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

Pr
ec

isi
on

C o m p r e s s i o n R a t i o

 C o u n t I c e b e r g
 O u r s T o p - K

(a) Precision.

1 2 3 4 5

1 0 3

1 0 4

MA
E

C o m p r e s s i o n R a t i o

 C o u n t I c e b e r g
 O u r s T o p - K

(b) MAE

Figure 16: Finding global top-𝐾 in hierarchical aggregation.
Figure 11, on non-i.i.d dataset, the RMSE of MinMax

adp
reaches 7.87,

2.78, and 1996 times lower than that of Iceberg, top-𝐾 sampling, and

Count on average, respectively; the MAE of MinMax
adp

reaches

3.26, 1.55, and 4834 times lower, respectively. The RMSE and MAE

of Count are always larger than 18,000 and 9,000, respectively. It is

worth noticing that Iceberg sampling has lower error than top-𝐾

on i.i.d dataset, while top-𝐾 sampling has lower error than Iceberg

on non-i.i.d dataset. Meanwhile, MinMax
adp

achieves the highest

accuracy on both cases.

Finding Global Top-𝐾 (Figure 12-13): The experimental results

show that when finding global top-𝐾 , MinMax
adp

achieves higher

precision and lower error compared with other algorithms. As

shown in Figure 12, on i.i.d dataset, the precision of MinMax
adp

is

1.6%, 25.8%, and 90.8% higher than that of Iceberg, top-𝐾 sampling,

and Count on average, respectively; the MAE of MinMax
adp

is 4.61,

3.70, and 63 times lower, respectively. The precision of Count is

always less than 0.15. As shown in Figure 13, on non-i.i.d dataset, the

precision of MinMax
adp

is 8.6%, 10.1%, and 94.4% higher than that

of Iceberg, top-𝐾 sampling, and Count on average, respectively; the

MAE of MinMax
adp

is 8.44, 2.94, and 121 times lower, respectively.

The precision of Count is always less than 0.05. It is worth noticing

that on i.i.d dataset, top-𝐾 sampling has high precision and low

error under low compression ratio. That’s mainly because in this

case, local top-𝐾 is most likely to be global top-𝐾 . Therefore, top-𝐾

sampling can accurately report all global top-𝐾 , thus achieving high

accuracy. However, under high compression ratio, top-𝐾 sampling

fails to transmit global top-𝐾 completely, therefore, the accuracy

decreases rapidly. On the contrary, MinMax
adp

treats each value

fairly, which means that smaller values also have the probability to

be transmitted. Therefore, MinMax
adp

achieves high accuracy at

all compression ratios.

Verification of outlier elimination (Figure 14): We further ver-

ify the impact of the outlier elimination threshold on aggregation

accuracy. As shown in Figure 14, for distributed state aggregation

tasks, we can find that setting the threshold to 50 can minimize

both MAE and RMSE. The optimal threshold differs on different

tasks. Fortunately, we find that when the threshold ranges from 30

to 200, MAE and RMSE are stable and much better than without

outlier elimination. Therefore, we recommend setting the threshold

to 100 if the user cannot easily get the optimal threshold. Although

we do not set the threshold to the optimal value, the performance

of MinMax
adp

is still much better than other algorithms.

5.3 Experiments on Hierarchical Aggregation
We simulate a 2-level hierarchical aggregation process with 10,000

leaf devices. Every 100 leaf devices are connected with a common

parent device, and all 100 parent devices are connected with the root

device. We use CAIDA dataset and allocate the dataset to each leaf

device in i.i.d way. Other settings are similar to that in distributed

state aggregation (see Section 5.2).

Estimating Global Frequency (Figure 15): The experimental

results show that when estimating global frequency, MinMax
adp

achieves lower error compared with other algorithms. As shown

in Figure 15, the RMSE of MinMax
adp

reaches 1.75, 2.45, and 188

times lower than that of Iceberg, top-𝐾 sampling, and Count on

average, respectively; the MAE of MinMax
adp

reaches 1.32, 1.78,

and 626 times lower, respectively. The RMSE and MAE of Count

are always larger than 25,000 and 14,000, respectively.

Finding Global Top-𝐾 (Figure 16): The experimental results

show that when finding global top-𝐾 , MinMax
adp

achieves higher

precision and lower error compared with other algorithms. As

shown in Figure 16, the precision of MinMax
adp

is 1.1%, 45.7%, and

85.9% higher than that of Iceberg, top-𝐾 sampling, and Count on

average, respectively; the MAE of MinMax
adp

is 1.73, 2.84, and 11.19

times lower, respectively. The precision of Count is always less than

0.05.

6 RELATEDWORK
Sketching algorithms: Sketches are a class of probabilistic data
structures. We should note that many prior sketching algorithms

(e.g., WavingSketch [27], Unbiased SpaceSaving [28], etc. [45]) are
mostly designed for a single device and cannot work on global

aggregation. Typical sketches used on global aggregation are linear

sketches such as the Count-Min sketch [25] and the Count sketch

[26]. Specifically, prior works [46] on global aggregation often use

Count sketches which are unbiased and provide a good accuracy

guarantee. The Count sketch [26] consists of a counter matrix with 𝑟

rows and 𝑐 columns. Each row is associated with two hash functions

ℎ𝑖 and 𝑔𝑖 . When inserting a vector with length 𝑚, for each row,

the Count sketch first uses 𝑔𝑖 to calculate a vector with length𝑚

and value ±1. Then the sketch multiplies the two vectors and uses

ℎ𝑖 to linearly map them to the row and sums them up. However,

linear sketches can only be merged if the size of sketches on all

devices being all the same, which prevents them from the adaptive

transmission.

Sampling algorithms: Sampling for global aggregation can be di-

vided into two categories: biased sampling and unbiased sampling.

Top-𝐾 sampling [32] is a typical biased sampling. However, its error

is linear to the number of local devices, which brings unacceptable

error in a large-scale scenario. Iceberg sampling [9] and H-sampling

[31] are two typical unbiased samplings. Iceberg sampling [9] pro-

poses a sampling strategy such that the MSE is independent of

distribution, aiming to minimize the worst-case mean square error.

It proposes using the sampling function 𝑝 (𝑥) = 𝑣
𝑣+𝐷 , where 𝐷 is a

global constant that depends on the compression ratio. H-sampling

[31] aims to minimize the number of sampled values under a given

cost. It proposes an instance-optimal sampling method, i.e., for ev-
ery given input, the sampling function always holds the optimal

cost among all the valid sampling functions. However, both meth-

ods require all local devices share the same configuration, thus

being unable to adjust the compression ratio on each local device

according to its available bandwidth.

Federated Learning: There are many prior works focusing on

accelerating aggregation in federated learning, including reducing

communication rounds (e.g., FedAvg [47]), asynchronous communi-

cation (e.g., ASO-Fed [48]), etc. [12, 49, 50]. Among them, the state-

of-the-art algorithms are top-𝐾 sparsification [38] and FetchSGD

[20]. DGC [38] proposes using top-𝐾 sparsification to compress

gradients. This method overcomes the disadvantage of FedAvg’s

requirement to transmit the full gradient. However, DGC requires

error feedback [51], which means all local clients have to record

their residuals for update afterward, resulting in extra local stor-

age and risks of losing information when local devices are out of

contact. FetchSGD[20] takes advantage of the linear property of

Count sketches to accommodate the federated learning scenario. It

avoids error feedback in each client by transmitting the gradient

unbiasedly. However, although theoretical proof shows FetchSGD

achieves success in combining sketch and federated learning, it still

needs improvement in practice, such as adaptiveness and acceptable

accuracy under a high compression ratio.

Distributed Machine Learning: There are also many prior

works focusing on accelerating aggregation in distributed machine

learning, including GSpar [39], Hard-threshold [52], signSGD [53],

GRACE [54], DeepReduce [55], etc. [56, 57]. However, different set-
tings of federated learning and distributed machine learning lead to

different bottlenecks and different preferences of communication

schemes. As shown in prior federated learning works [58, 59], many

algorithms about distributed machine learning (e.g., top-𝐾 sparsi-

fication and signSGD) fail in federated learning due to different

settings.

System for Wide-Area Network: Many prior works focus on

transmitting and aggregating data in the Wide-Area Network, such

as AWStream [19] and JetStream [7]. They mainly focus on video

streams. To achieve fast and reliable transmission, they learn the

most appropriate transmission rate from historical network status

through Pareto-optimal configurations and provide detailed video

down-sampling strategies. These works also claim that they support

global aggregation tasks, but they do not provide a detailed scheme

to reduce the number of transmitted values. Fortunately, MinMax

Sampling can be combined with their efforts as a near-optimal

sampling scheme.

7 CONCLUSION
In this paper, we propose MinMax Sampling, a communication

scheme for global aggregation in the Wide-Area Network. MinMax

Sampling contains two versions, MinMaxopt achieves optimal accu-

racy: it can minimize the maximum variance of all estimated values,

while MinMax
adp

meets all three requirements of designing a com-

munication scheme: 1) Fast computation. It can generate a local

summary of any desired size in linear time. 2) Adaptive transmission.

It supports three different working modes: basic mode, incremental

mode, and streaming mode. 3) Near-optimal accuracy. It can control

the variance of all estimated values to the near-optimal variance.

We evaluate MinMax
adp

with three applications: federated learning,

distributed state aggregation, and hierarchical aggregation. Our

experimental results show that MinMax
adp

is superior to existing

algorithms in all three applications: compared with the state-of-the-

art, its accuracy is 8.44× higher on average. Further, accurate global

aggregation can help improve the accuracy of federated learning

by up to 7.73%. The source codes of MinMax Sampling are available

at Github [1].

REFERENCES
[1] Source code related to MinMax Sampling.

https://github.com/Arimase97/MinMax-Sampling.

[2] Matthew K. Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan

Seshan, and Hui Zhang. Practical, real-time centralized control for cdn-based

live video delivery. In SIGCOMM 2015, pages 311–324. ACM, 2015.

[3] Brad Glasbergen, Kyle Langendoen, Michael Abebe, and Khuzaima Daudjee.

Chronocache: Predictive and adaptive mid-tier query result caching. In SIGMOD
Conference 2020], June 14-19, 2020, pages 2391–2406. ACM, 2020.

[4] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,

Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,

Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter

Mattis. Cockroachdb: The resilient geo-distributed SQL database. In SIGMOD
Conference 2020, pages 1493–1509. ACM, 2020.

[5] Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jungblut, Kon-

stantinos Karanasos, Jitendra Padhye, and George Varghese. Wanalytics: Geo-

distributed analytics for a data intensive world. In SIGMOD Conference 2015,
pages 1087–1092. ACM, 2015.

[6] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R.

Ganger, Phillip B. Gibbons, and Onur Mutlu. Gaia: Geo-distributed machine learn-

ing approaching LAN speeds. In NSDI 2017, pages 629–647. USENIX Association,

2017.

[7] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S. Pai, andMichael J. Freedman.

Aggregation and degradation in jetstream: Streaming analytics in the wide area.

In NSDI 2014, pages 275–288. USENIX Association, 2014.

[8] Xin Li, Fang Bian, Mark Crovella, Christophe Diot, Ramesh Govindan, Gianluca

Iannaccone, and Anukool Lakhina. Detection and identification of network

anomalies using sketch subspaces. In IMC 2006, pages 147–152. ACM, 2006.

[9] Qi Zhao, Mitsunori Ogihara, Haixun Wang, and Jun (Jim) Xu. Finding global

icebergs over distributed data sets. In PODS 2006, pages 298–307. ACM, 2006.

[10] Kiran Maraiya, Kamal Kant, and Nitin Gupta. Wireless sensor network: a review

on data aggregation. International Journal of Scientific & Engineering Research,
2(4):1–6, 2011.

[11] AmitManjhi, SumanNath, and Phillip B. Gibbons. Tributaries and deltas: Efficient

and robust aggregation in sensor network streams. In SIGMOD Conference 2005,
pages 287–298. ACM, 2005.

[12] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for

improving communication efficiency. CoRR, abs/1610.05492, 2016.
[13] Mu Li, David G. Andersen, JunWoo Park, Alexander J. Smola, Amr Ahmed, Vanja

Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed

machine learning with the parameter server. In OSDI ’14, pages 583–598. USENIX
Association, 2014.

[14] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter

Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,

Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,

Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,

Ruth Wang, and Dale Woodford. Spanner: Google’s globally-distributed database.

In OSDI 2012, pages 251–264. USENIX Association, 2012.

[15] Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan, Kevin Lai,

Shuo Wu, Sandeep Govind Dhoot, Abhilash Rajesh Kumar, Ankur Agiwal, Sanjay

Bhansali, Mingsheng Hong, Jamie Cameron, Masood Siddiqi, David Jones, Jeff

Shute, Andrey Gubarev, Shivakumar Venkataraman, and Divyakant Agrawal.

Mesa: Geo-replicated, near real-time, scalable data warehousing. Proc. VLDB
Endow., 7(12):1259–1270, 2014.

[16] Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jungblut, Jitu

Padhye, and George Varghese. Global analytics in the face of bandwidth and

regulatory constraints. In NSDI 15, pages 323–336. USENIX Association, 2015.

[17] Sara Alspaugh, Bei Di Chen, Jessica Lin, Archana Ganapathi, Marti A. Hearst, and

Randy H. Katz. Analyzing log analysis: An empirical study of user log mining.

In LISA ’14, pages 53–68. USENIX Association, 2014.

[18] Yu Chen, Kai Hwang, and Wei-Shinn Ku. Collaborative detection of ddos attacks

over multiple network domains. IEEE Trans. Parallel Distributed Syst., 18(12):1649–
1662, 2007.

[19] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Edward A. Lee.

Awstream: adaptive wide-area streaming analytics. In SIGCOMM 2018, pages
236–252. ACM, 2018.

[20] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Sto-

ica, Vladimir Braverman, Joseph Gonzalez, and Raman Arora. Fetchsgd:

Communication-efficient federated learning with sketching. In ICML 2020, vol-
ume 119, pages 8253–8265. PMLR, 2020.

[21] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica,

and Raman Arora. Communication-efficient distributed SGD with sketching. In

NeurIPS 2019, pages 13144–13154, 2019.
[22] Moshe Gabel, Assaf Schuster, and Daniel Keren. Communication-efficient dis-

tributed variance monitoring and outlier detection for multivariate time series.

In 2014 IEEE 28th International Parallel and Distributed Processing Symposium,

pages 37–47. IEEE Computer Society, 2014.

[23] Yong Yao and Johannes Gehrke. The cougar approach to in-network query

processing in sensor networks. SIGMOD Rec., 31(3):9–18, 2002.
[24] David A Huffman. A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9):1098–1101, 1952.
[25] Graham Cormode and Shan Muthukrishnan. An improved data stream summary:

the count-min sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005.

[26] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items

in data streams. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 693–703. Springer, 2002.

[27] Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and Gong

Zhang. Wavingsketch: An unbiased and generic sketch for finding top-k items

in data streams. In KDD ’20, pages 1574–1584. ACM, 2020.

[28] Daniel Ting. Data sketches for disaggregated subset sum and frequent item

estimation. In SIGMOD Conference 2018, pages 1129–1140. ACM, 2018.

[29] Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. Persistent data

sketching. In SIGMOD Conference 2015, pages 795–810. ACM, 2015.

[30] Daniel Ting. Count-min: Optimal estimation and tight error bounds using

empirical error distributions. In KDD 2018, pages 2319–2328. ACM, 2018.

[31] Zengfeng Huang, Ke Yi, Yunhao Liu, and Guihai Chen. Optimal sampling algo-

rithms for frequency estimation in distributed data. In INFOCOM 2011, pages
1997–2005. IEEE, 2011.

[32] Graham Cormode, Minos N. Garofalakis, S. Muthukrishnan, and Rajeev Rastogi.

Holistic aggregates in a networked world: Distributed tracking of approximate

quantiles. In SIGMOD Conference 2005, pages 25–36. ACM, 2005.

[33] Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD

with memory. In NeurIPS 2018, pages 4452–4463, 2018.
[34] Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu Han, Yibo Zhu, and Lei

Cui. Congestion control for cross-datacenter networks. In ICNP 2019, pages 1–12.
IEEE, 2019.

[35] Anil Shanbhag, Holger Pirk, and SamuelMadden. Efficient top-k query processing

on massively parallel hardware. In SIGMOD Conference 2018, pages 1557–1570.
ACM, 2018.

[36] Hosam M Mahmoud. Sorting: A distribution theory, volume 54. John Wiley &

Sons, 2011.

[37] Alfréd Rényi. On the theory of order statistics. Acta Mathematica Academiae
Scientiarum Hungarica, 4(3-4):191–231, 1953.

[38] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient com-

pression: Reducing the communication bandwidth for distributed training. In

ICLR 2018. OpenReview.net, 2018.
[39] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification

for communication-efficient distributed optimization. In NeurIPS 2018, pages
1306–1316, 2018.

[40] A Krizhevsky. Learning multiple layers of features from tiny images. Master’s
thesis, University of Tront, 2009.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In CVPR 2016, pages 770–778. IEEE Computer Society,

2016.

[42] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,

H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark

for federated settings. arXiv preprint arXiv:1812.01097, 2018.
[43] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist:

Extending mnist to handwritten letters. In IJCNN 2017, pages 2921–2926. IEEE,
2017.

[44] The CAIDA Anonymized Internet Traces.

http://www.caida.org/data/overview/.

[45] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng

Liu, Ruwen Zhang, and Junchen Jiang. Cocosketch: high-performance sketch-

based measurement over arbitrary partial key query. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, pages 207–222, 2021.

[46] Tayyebeh Jahani-Nezhad and Mohammad Ali Maddah-Ali. Codedsketch: Coded

distributed computation of approximated matrix multiplication. In ISIT 2019,
pages 2489–2493. IEEE, 2019.

[47] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. Communication-efficient learning of deep networks

from decentralized data. In AISTATS 2017, volume 54, pages 1273–1282. PMLR,

2017.

[48] Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. Asynchronous

online federated learning for edge devices with non-iid data. In IEEE BigData
2020, pages 15–24. IEEE, 2020.

[49] Aritra Dutta, El Houcine Bergou, Ahmed M. Abdelmoniem, Chen-Yu Ho,

Atal Narayan Sahu, Marco Canini, and Panos Kalnis. On the discrepancy between

the theoretical analysis and practical implementations of compressed commu-

nication for distributed deep learning. In AAAI 2020, pages 3817–3824. AAAI
Press, 2020.

[50] Mingxun Zhou, Tianhao Wang, T.-H. Hubert Chan, Giulia Fanti, and Elaine Shi.

Locally differentially private sparse vector aggregation. CoRR, abs/2112.03449,

https://github.com/Arimase97/MinMax-Sampling
http://www.caida.org/data/overview/

2021.

[51] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U. Stich, and Martin Jaggi.

Error feedback fixes signsgd and other gradient compression schemes. In ICML
2019, volume 97, pages 3252–3261. PMLR, 2019.

[52] Atal Sahu, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco

Canini, and Panos Kalnis. Rethinking gradient sparsification as total error mini-

mization. Advances in Neural Information Processing Systems, 34, 2021.
[53] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree

Anandkumar. SIGNSGD: compressed optimisation for non-convex problems. In

ICML 2018, volume 80, pages 559–568. PMLR, 2018.

[54] Hang Xu, Chen-Yu Ho, AhmedMAbdelmoniem, Aritra Dutta, El Houcine Bergou,

Konstantinos Karatsenidis, Marco Canini, and Panos Kalnis. Grace: A compressed

communication framework for distributed machine learning. In ICDCS 2021,
pages 561–572. IEEE, 2021.

[55] Kelly Kostopoulou, Hang Xu, Aritra Dutta, Xin Li, Alexandros Ntoulas, and Panos

Kalnis. Deepreduce: A sparse-tensor communication framework for distributed

deep learning. arXiv preprint arXiv:2102.03112, 2021.
[56] Yikai Zhao, Zheng Zhong, Yuanpeng Li, Yi Zhou, Yifan Zhu, Li Chen, YiWang, and

Tong Yang. Cluster-reduce: Compressing sketches for distributed data streams.

In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 2316–2326, 2021.

[57] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. Sketchml: Accelerating

distributed machine learning with data sketches. In Proceedings of the 2018
International Conference on Management of Data, pages 1269–1284, 2018.

[58] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek.

Robust and communication-efficient federated learning from non-iid data. IEEE
transactions on neural networks and learning systems, 31(9):3400–3413, 2019.

[59] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated

learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine, 37(3):50–60, 2020.

	Abstract
	1 introduction
	1.1 Background and Motivation
	1.2 Limitations of Prior Art
	1.3 Our Proposed Algorithm
	1.4 Main Contribution

	2 Preliminary
	3 MinMax Sampling
	3.1 Optimal Version
	3.2 Adaptive Version
	3.3 Aggregation & Outlier Elimination

	4 Applications
	5 Experimental Results
	5.1 Experiments on Federated Learning
	5.2 Experiments on Distributed State Aggregation
	5.3 Experiments on Hierarchical Aggregation

	6 Related Work
	7 Conclusion
	References

